Nonthermoregulatory control of cutaneous vascular conductance and sweating during recovery from dynamic exercise in women.
نویسندگان
چکیده
The purpose of the study was to examine the effect of 1) active (loadless pedaling), 2) passive (assisted pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), cutaneous vascular conductance (CVC), and sweat rate during recovery after 15 min of dynamic exercise in women. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, CVC, and sweating during exercise recovery. Ten female subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 20 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (Tsk), esophageal temperature (Tes), skin blood flow, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, 15, and 20 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active recovery mode, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining MAP. Sweat rate was different among all modes after 12 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the inactive mode (P < 0.05). No differences in either Tes or Tsk were observed among conditions. The results indicate that CVC can be modulated by central command and possibly cardiopulmonary baroreceptors in women. However, differences in sweat rate may be influenced by factors such as central command, mechanoreceptor stimulation, or cardiopulmonary baroreceptors.
منابع مشابه
Wearing graduated compression stockings augments cutaneous vasodilation but not sweating during exercise in the heat
The activation of cutaneous vasodilation and sweating are essential to the regulation of core temperature during exercise in the heat. We assessed the effect of graduated compression induced by wearing stockings on cutaneous vasodilation and sweating during exercise in the heat (30°C). On two separate occasions, nine young males exercised for 45 min or until core temperature reached ~1.5°C abov...
متن کاملControl of cutaneous vascular conductance and sweating during recovery from dynamic exercise in humans.
The purpose of the study was to examine the effect of 1) passive (assisted pedaling), 2) active (loadless pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), skin blood flow (SkBF), and sweating during recovery after 15 min of dynamic exercise. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, SkBF, and s...
متن کاملThe roles of the Na+/K+‐ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo
Na+/K+-ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na-K-2Cl co-transporter (NKCC) and K+ channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24 ± 4 years) males perf...
متن کاملModulation of muscle metaboreceptor activation upon sweating and cutaneous 1 vascular responses to rising core temperature in humans 2 3 4
28 The present study investigated the role of muscle metaboreceptor activation on human 29 thermoregulation by measuring core temperature thresholds and slopes for sweating and 30 cutaneous vascular responses during passive heating associated with central and peripheral 31 mechanisms. Six male and eight female subjects inserted their lower legs into hot water (43°C) 32 while wearing a water per...
متن کامل15 degrees head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time.
The following study examined the effect of 15 degrees head-down tilt (HDT) on postexercise heat loss and hemodynamic responses. We tested the hypothesis that recovery from dynamic exercise in the HDT position would attenuate the reduction in the heat loss responses of cutaneous vascular conductance (CVC) and sweating relative to upright seated (URS) recovery in association with an augmented hem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2005